If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=4.9x^2+35x
We move all terms to the left:
0-(4.9x^2+35x)=0
We add all the numbers together, and all the variables
-(4.9x^2+35x)=0
We get rid of parentheses
-4.9x^2-35x=0
a = -4.9; b = -35; c = 0;
Δ = b2-4ac
Δ = -352-4·(-4.9)·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-35}{2*-4.9}=\frac{0}{-9.8} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+35}{2*-4.9}=\frac{70}{-9.8} =-7+1/7 $
| 1.1=4.9t^2 | | 5(11+8x)=12(x+3) | | 30=4w+w | | 37+72=x | | 2p+9=-3 | | (10^x/6)(10^x/8)=10^10 | | -4x+-28=8 | | 2x-3=(4x9) | | 1x+76=180 | | 7.1x-12.6=1.6 | | 1x+188=180 | | 15a-80=4a+72 | | 2x+43=4x+1 | | 12x+17=25 | | 450=120/2h+10 | | 6p•3=3•6p= | | -6-3a=21 | | 450=60h+10 | | 50(4x12)=200 | | -7x-6x-1+4=1 | | 2x+12=8x-4 | | 9x-5x-1=2 | | 8t+13=9 | | 60+6m-18=5m | | m-3/5+2=m/6 | | .17x=29+.13x | | -6M=-D+n | | 22-3t=10 | | 0.13x+(0.18)(50)=(0.16)(x+50) | | -7p=9-8p | | -5/3x-5=-55 | | 18=3d+9 |